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Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the
initial state, are studied for systems wi@(n) symmetry at zero temperature in phase-ordering kinetics.
Including corrections to scaling, the equal time pair correlation function has the @nt)="fy(r/L)
+L“f(r/L)+-- -, whereL is the coarsening length scale. The correction-to-scaling expaneatd the
correction-to-scaling functiorf,(x) are calculated for both nonconserved and conserved order parameter
systems using the approximate Gaussian closure theory of Mazenko. In genisra nontrivial exponent
which depends on both the dimensionalityof the system and the number of componemtsf the order
parameter. Corrections to scaling are also calculated for the nonconserved one-dimeti¢iamadel, where
an exact solution is possiblES1063-651X%99)11308-4

PACS numbd(s): 64.60.Cn

[. INTRODUCTION teristic length scalé (t) grows with time ad (t) ~t#, where
a is the growth exponent which depends on the nature of the

The dynamics of a system undergoing phase ordering foldynamics and the symmetry of the order parameter. In par-
lowing a quench from the high temperatu¢disorderegl  ticular, a=1/2 for nonconserved order parameter systems,
phase to the ordered phase is of great intdrEsfThe kinet-  while a=1/3 for systems with conserved scalar order param-
ics of systems wittO(n) symmetry subject to “model A” eter anda=1/4 for systems with conserved vector order pa-
dynamics[2] (i.e., systems with nonconserved order param+ameter (with logarithmic corrections forn=2, d>2
etep and “model B” dynamicg 2] (systems with conserved [10]). In previous work[8] we studied how scaling is ap-
order parametéhave been previously studi¢8,4] withina  proached in nonconserved order parameter models such as
Gaussian closure theory originally developed by Mazenkdhe one-dimensiondllD) Ising model with Glauber dynam-
[5,6] following the seminal work of Ohta, Jasnow, and Ka- ics, the n-vector model withn=o, the approximate OJK
wasaki(OJK) [7]. In previous work[8] we have computed theory and the Mazenko theory for scalar fields. In all these
the form of the corrections to the scaling limit, and the casesw was found to be trivial ¢ =4) except the last, for
correction-to-scaling exponent, for a number of systems witlwhich » was found to be non-trivial and dimensionality de-
nonconserved order parameter. These include some exacthyendent. The relevance of corrections to scaling lies in inter-
soluble models, and the model A dynamics of a scalar fielgoreting experimental and simulation results, where it is ad-
within the Mazenko theory. vantageous to know how the scaling limit is approached.

In the present work we turn our attention to systems withCorrections to scaling in systems with finite>1 in d=3
a vector order parameter, both nonconserved and conservegthdd=2 were not considered if8]. The main objective in
The corrections to scaling for systems with continuous symthis article is to study systems wite=2.
metry will be calculated using the Mazenko theory. It should  This article is devoted to the study of the corrections to
be mentioned that this approach has been shown to be mogealing for systems witlD(n) symmetry in phase-ordering
successful, at a quantitative level, in systems with noncondynamics. The leading corrections to scaling enter the corre-
served order parameter than those with conserved order pgtion function in the form
rameter[9]. Nevertheless, the results obtained in the con-
served case are in qualitative agreement with those obtained C(r,t)=fo(r/L)+L~“f,(r/L), (1)
in simulations. Furthermore, the Mazenko approach seems
t_he only ava_ilable method to probe the_questions of correcynere fo(x) is the “scaling function” and f,(x) the
tions to scaling addressed here. In particular, we found thaly,rection-to-scaling function.” The quantity which unites
for nonconserved scalar fields, the correction-to-scaling exfheory, computer simulation and experiment is the structure
ponentw is predicted by th_is approach to have a nontrivial g5 iy S(k,t)=L%,(y) + L9 g, (y), where go(y) and
value. We will s_how that_thls same featu_re is present for thegl(y) are thed-dimensional Fourier transforms 6§(x) and
vecto_r fields, with and without conserva’qon. f,(x) respectively, and/=kL. Coniglio and Zannett[11]

It is well established 1] that at Iat.e times most phase- solved the conserve®(n) model for n=c exactly, and
ordering systems approach a scaling regime, where thg,,q that no simple scaling exists. Instead a “multiscaling”
equal-time pair correlation functionC(r,t)=(#(X+  pehavior was obtained, raising the question of whether
r,t)- (x,t)) takes the formC(r,t)=f[r/L(t)]. The charac- simple scaling exists in conserved order parameter systems
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with n>1 .generally(or even for conserved scalar fields represents the space-time poiritl {t,) and V% means the
However, it was later shown by Bray and Humajz], Laplacian with respect t&l. Multiplying Eq. (2) by JS(Z),

analytically within the Mazenko theory, that scaling does } o s - !
exist for large but finiten. Attempts to find multiscaling be- averaging over |n|t|al_ conditions, and using the transational
invariance ofC(12) gives(for t;=t,=t)

havior in simulation data for conserved scalar figlti3], or

the conservedXY model in two[14] or three[15] dimen- ~
sions were not successful. It is now generally believed that 14c(12) =(—V?)P| V2C(12) - M.q}(z) ’
scaling is recovered asymptotically in time in the conserved 2 ot dp(1)

O(n) model, for all finiten, though multiscaling may be €)
observable in the preasymptotic regifiié)]. 5. ) )
There are other sources of corrections to scaling apain€re NOWV< is the Laplacian with respect 10=|x; — |
from the one considered in this paper. In phase-ordering sy@nd C(12)=(¢(1)- ¢(2)). The angular brackets denote the
tems there is, in addition to the time-dependent coarseningverage over the initial conditions. In order to evaluate the
scaleL(t), a second characteristic length scale, the “defecverage of the last term in E(B) one introduces an auxiliary
core size” ¢, in systems with topological defects. The cor- field m(r,t) related to ¢ by VZé=20V($)/d¢, with
rections to scaling associated with nonzero defect core sizgoundary conditionp— m/|m| as|m|—c, and =0 atm

(where{ is the domain wall thickness in scalar systg¢mes =0. Near a defect, the fieltfh(r) is the position vector of the

expected to enter as a power L. Here we are interested pointr in the plane normal to the defect. The assumption that
primarily in the corrections to scaling associated with non--" T T
scaling initial conditions. We therefore suppress the contri/ IS @ Gaussian field enables the evaluation of the average of
butions associated with nonzero core sizdy taking the € last term on the right hand side of E8) giving [3]

“hard-spin” limit, i.e., working with an order-parameter

field whose length is everywhere unitg;?= 1, which forces

£=0 (though in the Mazenko theory this limit will be taken

at the engl Also thermal fluctuations aE>0 may give rise whereS,=(m(1)?) and

to significant corrections to scaling for systems quenched to

a nonzero final temperatuie[17] (where O<T<T., with y(12)=(m(1)m(2))/[{m(1)?)(m(2)?)]*2

T, the critical temperatujeas has been shown explicitly in

the nonconserve®(n) model with n—o [18]. However, is the normalized correlator of the fietd (wheremis one of

we will only be studying systems quenched Te=0. Al-  the components af). An explicit expression which relates

though corrections to scaling due to thermal fluctuations and, to C(12) was given if{19]

nonzero¢é are important we will not consider them further in

this paper. _nhy
The outline of the paper is as follows. In the following C= 2

section the approximate Mazenko theory is discussed and

some general concepts are introduced. Section Il deals witivhereB(y,z)=T"(y)I'(2)/T'(y+z) is the Beta function and

nonconserved order parameter systems. In Sec. IV, correé(a,b;c;z) the hypergeometric function. Equatiof® and

tions to scaling for the nonconserved X model will be  (5) provide closed form equations f@{12). On substituting

studied. Systems with conserved order parameter are consitqg. (5) in Eq. (4) one obtains an equation fgrwhich can in

ered in Sec. V. Section VI concludes with a summary andorinciple be solved numerically and substituted back into Eq.

discussion. (5) to obtain the correlation functio€(12). We note at this

point that in deriving the correlation functidb), the “hard-

Il. MAZENKO THEORY spin” limit ¢=m/|m| was employed. Since this result holds
far from defect cores, it will correctly describe the scaling

A “Gaussian closure” theory, building on the earlier jimit where the defects are dilute. Here we are also using it to
work of Ohta, Jasnow, and Kawas&Ki has been developed compute the corrections to scaling.

by Mazenkd5]. This theory has been successfully applied to
O(n) models in the theory of phase-ordering dynanm&$)].

The equation of motion for an order paramezfewith con-

10012 _ o of canigp, L0012

4

(n+1 1) 2 (1 1 n+2 2)
2 2)|Flzz 2] ®

IIl. NONCONSERVED O(N) MODEL

tinuous symmetry, for systems quenchedte 0, is For a nonconserved systep=0, and Eq.(4) is simply
- - 1 0C(12) dC(12
dp(1 R V[ (1 — =y?2 - o
P _ vz vz - 22 ) 2 Ve ey - ©
oty Ip(1)

For n=1, using the properties of the hypergeometric func-
wherep=1 andp=0 for conserved order parametenodel  tion the last term on the right hand side of Hf) can be
B) and nonconserved order parametsrodel A) systems, written in terms of C(12) only, resulting in an equation
respectively. In Eq(2), V(¢) is a symmetric double-well which is independent of(12). Corrections to scaling in this
potential for the scalar case, and a “wine bottle” potential case where obtained in our previous w8, and will not
with a degenerate continuum manifold for a vector orderbe considered further here. For generay cannot be elimi-
parameter. Compact notation has been used in which “1™nated in favor ofC(12), and we will therefore work withy
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instead ofC(12). From dimensional considerations we see TABLE I. Exponent\ within Mazenko theory for model A.
that Sy~L2 and can be chosen &,=L2/\. This choice
effectively defined., up to an overall constant. Far»%,an N 2 3 4 5
expansio_n in ﬂgan be pen;ormed 068 (y), and in this limit d=1 0.301 0.378 0.414 0.433
vydC/dy=C+C®°/n+0O(1/n“). For n=co, M_azenko theory d=2 0.829 0.883 0.912 0.930
reduces to th@=c n-vector model for which an exact so- ,_, 1382 1413 1432 1.445
lution, including the corrections to scaling, is knowal.

Expressing Eq(6) in terms ofy explicitly leads to

CYOVO/C70~[(1— ¥o)|In(1— 70)|]_lv n=2, (19

19y C, [dy\? &%y d—1dy \
za—ty:¥(a—3) tt a0
Y or 2L C'yo'yo'yolcyow[(l_’YO)zlln(l_’)/O)H_la n:21
whereC,=dC/dy etc. SinceC(r,t) is a function ofy(r,t), _
Y 4)/2
the scaling and corrections to scaling can be imposed on Cvch)/CvoN[l_VO](n 2, 2<n<4,
y(r,t). In the scaling limit we expecy(r,t) to approach the e
scaling function yo(r/L) which is L-independent if all Crorore!Cro~[1= 701" ™92 2<n<a4,
lengths are scaled bly. In this limit therefore one expects
LdL/dt=const. Including corrections to scaling w(r,t) CYOYO/C70~|In(1—yO)|, n=4,
andL(t) as usua[8] we can write
-1 —
" i ; Crorore!Cry~[1=v0] ", n=4,
YrO=yo| o] L “m| ]+ )
C,.,,/C, —const, 4n<6,
0’0 0
r
Clr)=fo| | +L “fof |+, (9) Crorore!Cro~[1= 7] ™92 4<n<s,
L 1 b and so on. We have given explicit expressions;(tc})(gyt)/Cy0
TR et (10 andemyO/C70 asy,—1 for the values ofi which we are
L going to study. Using the above results one can sf8jhat
where the smallx behavior ofyy(x) is given by
! (=1 oy .. (16)
fo| | =C(70). (1) Yo =1-74
r r\dc for n=2, where the limiting forms in Eq.15) were used to
fl(f) =y E)[d_‘y , (12)  demonstrate that the term involvi, , /C,, in Eq.(13) is

Y= subdominant ag—0 for n=2.

For largex, yo—0 [also C(12)—0] and Eq.(13) be-
mes linear because in this limit the second term in(E8).

is negligible. It is easy to show that two linearly independent
solutions of the linearized equation have the asymptotic

and b is a constant. Equating leading and next-to-leadingc0
powers ofL in the usual way gives

Yo+ Cron ve 2 + XL a-1 yot =ye=0, (13 forms yof'x*ZA and yp~x?* Y exp(—x4/8), for x—x. As
Cy 4 2 Eqg. (13 is integrated forward fronx=0, the largex solu-
tion obtained will in general be a linear combinationy;
L [x d-1 N Cloro and yy,. The amplitudes ofyy; and y,,, however, depend
vit+ Z+T i+ §+Z v+ Ex%’frz C Yov1 on \. For systems with initial conditions containing only
Yo short-range spatial correlatiorias is the case for systems
c (C. )2 quen_ched from_ high tem_peratmna power-_lgw decay is un-
Y% Y% y1v0'2=0 (14) physical, and\ is determined by the condition that the coef-
Cyo Cy02 170 ' ficient of the power-law termy,,, must vanish/3]. Note

that\ is related to the exponeﬁdescribing the decay of the

with C, =[dC/dy],-, , etc. The primes indicate deriva- autocorrelation functiofi21] via A\=d—\. Values for\ are
tives with respect to the scaling variable=r/L. given in Table | for 2<n=<5 and l=d=3. Comparison of
Equations(13) and (14) are to be integrated numerically the predicted values of with simulations[22] and experi-
subject to appropriate “initial” conditions imposed @at=0.  ments[23] show reasonable agreement. It can be shown that
Sincex=0 corresponds ta/y=1, the initial conditions are for d— the OJK result X=d/2) is recovered for both
obtained by considering the regimg—1. Using the prop- scalar{24] and vectof3] cases. The same limit for is also
erties of the hypergeometric functiof20] one can derive obtained forn—oo at arbitraryd.
relations betwee(y,) and its derivatives ag,— 1. Up to The correction-to-scaling exponert, is found from Eq.
prefactors of order unity, we find in this limit (14) in a similar way to the determination affrom Eq.(13).
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TABLE II. Correction-to-scaling exponend within Mazenko s T T T
theory for model A. ool °
n 2 3 4 5 081

0.7}
d=1 3.976 3.982 3.990 3.993 06t
d=2 3.928 3.946 3.961 3.970 < ’
d=3 3.930 3.945 3.958 3.966 - 09

0.4}

0.3}
In order to specify initial conditions for the numerical inte-  gof
gration of Eq.(14), we need the smak-behavior ofy,(x). 01l
A smallx analysis of Eq.(14) gives y,=bxx*/16d(d+2) ’

+ .-, where the results in Eq15) were used to show that % 1 2 3 4 5 8 7 & 9 10

the last two terms in Eq14) are subdominant as—0. The
required initial conditions are thereforg,(0)=y;(0)=0.
As x—oo, the last two terms in Eq.14) can be neglected. 035}
The two linearly independent solutions of the simplified
equations have a power-law tai-§~ (“*2)) and a Gauss-

ian tail [~ x%xp(—x?/8)] for largex, whereq=2\ —d+ w if 0.95
w>2 andg=2\—d+2 otherwise. Having already found __
\, w is chosen on physical grounds in the same way as Z 02r
namely that the coefficient of the power-law term in the 451
largex solution should vanish. The values @fobtained are

0.4

03r

given in Table Il for 2<n<5 and Il<d=<3. Note thatw 01r \

—4 for d—x, as the OJK resulfand its generalization to 005t

vector fields is recovered in this limit. \\L
After solving Egs.(13) and(14) for yy(x) and y4(x) we O3 2 23 4 5 6 7 8 9o 10

use these results to get the scaling functfg(x) and the X

correction-to-scaling functiofiy(x) from Egs.(11) and(12). FIG. 1. The scaling functiofiy(x) and the correction-to-scaling

F|gure_ 1 ShOWS_ the S‘?a"”g functiongy(x) a”?' the function f,(x) for nonconserved order parameter. Continuous and
correction-to-scaling functions, (x) for n=2 and 3 in 3D.  oen lines correspond th=n=3 andd=3, n=2, respectively.
The amplitude off 1(x) is arbitrary. It is determined by the

coefficientb introduced in Eq(10): the valueb=2 was used growth law,L ~tY4 for the characteristic length exhibited by
in Fig. 1. The scaling functions and the correction-to-scaling, pair correlation function, compared with the ustal
functions do not show strong dt_apenden(_:emalndd forn _ ~t¥2 growth law of nonconserved models. Mazenko theory
=2. Forn=1 andn=2 the scaling functions are very dif- 465 not predict this growth law, for the simple reason that
ferent, especially in the smatl{egmn. The reason for th|_s IS the theory has been built in such way that it might be ex-
the presence of the sharp interfacesiin 1 systems, which  pacted to give qualitatively correct results only for systems
lead to a finite slope at the origin ify(x) [1] and a cubic  \ith topological defectsi.e., n<d), since then-component

smallx behavior infy(x) [8]. Forn=2, the smalk is qua- auxiliary field rﬁ(r t) is defined in terms of the underlying
?Or?te'(\:/;%;fo’ and quartic forf,, with logarithmic corrections defect structure. Despite this, the theory does a reasonable
Within Mazenko theory the correction-to-scaling expo-J.Ob of accounting for th? beha\.no.r of systems wilird, and
in fact becomes exact in the limit—«~. However, systems

nent w is nontrivial and depends on bothand d, with . N . .
=<4 for all n andd in nonconserve®(n) models. The upper with n=d+1, Wh'ch can suppart topological textures, are
poorly treated by this approach.

bound of 4 is obtained whed— (for any value ofn) or An exact solution for the nonconserved=2, d=1 sys-

n—ee (for any value ofd). tem is possible because the equation of motion for the order

A noteworthy feature of Fig. 1 is that the correction-to- i . -
scaling functionf,(x) is much larger tharfy(x) at largex parameter becomes linear in the angle representation,

(the same feature was found for many of the models studied (C0S#:sin®), which is natural in the hard-spin limit, where
in [8]). This means that, in fitting data, scaling violations at¢*=1. In this limit the free energy functional is simpfy
largex should be given less weight in choosing fitting pa- = (1/2)fdx(d$/dx)2=(1/2)fdx(d6/dx)2. The  zero-
rameters{e.g., the scale length(t) ] _than violatiqns at small temperature equation of motion for model Au?)/at=
?hr intermediatex, because corrections to scaling are larger 5F15, becomes, in the angle representation,

ere.

96 3%
IV. THE ONE-DIMENSIONAL XY MODEL Far (17)

An exact solution of this model was first presented by
Newmanet al. [22]. The solution yields an “anomalous” which is a diffusion equation for the phase anglerhus one
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characteristic length scale is the “phase diffusion length,”behavior may be present there also. Although no exact solu-

Lﬁztl’z, but this is not the scale which characterizes the paition is known for the conserved case, heuristic arguments,

correlation function. based on the role of the two characteristic lengths, can ac-
Equation (17) can be solved in Fourier space to give count for the observet!’® growth[25].

0, (t)= 6,(0)expk?t). In evaluating quantities of interest

such as correlation functions, one needs to specify the initial V. CONSERVED O(n) MODEL
conditions. The probability distributionP([ 6,(0)]), for ) ) ) )
6,(0) is conveniently chosen to be GaussiB 6,(0)]) The dynamical scaling properties of systems with a con-

o« exf — 15,8:6(0)0_(0)]. The choiceB, = k%2 is made serv_ed ord_er parametémodel B With o(n) symmetry is _
as it gives the initial conditiorC(r,0)=exp(—r/&,) for the studied using Mazenko theory. Naive apejlacatlon of this
order-parameter correlation function, which is the appropri{h€ory does not give correct growth law~t=* for scalar
ate form for systems quenched from an equilibrium disorfields (the bulk diffusion field must be included in order to

dered state with correlation lengéig. The equal-time corre- 9€t the correct laf26]). Here, however, we will only con-

lation function is given by sider systems wittln=2. For model B systems, E¢4) be-
comes

C(r,)=(h(x,1)- G(x+1,1))=(cog O(x+1,t) = 6(x,1)]). 10C(12) vl vee 1o dC(12) -

Using the Gaussian probability distribution féx(0) Eg.

(18:) gwith the (;jyn;miCZN) gil\lle)g IStribu %(0) Eq with a(t)=1/2S,. For Eq.(21) to have a scaling solution it

is clear thata~1/L% and L~tY4 The latter is the correct
1 growth law forn=2, but forn=2, d>2 there are loga-
C(r,t):ex;< —E —exp(— 2k?t)[1—coskr]|. rithmic correctiond 10] which Eq.(21) fails to predict. We
K P 19 will first consider the case whereis very large. In this case
(19 an expansion in 1/ can be made in Eq21). For largen,
Since the characteristic value kfin the integral is of order C(73)~ Y 7(1; 72)/,2”+O(1/”2) and y[dC(12)/dy]=C
t=Y2 and we anticipatdsee below the growth lawL(t) +C /p+O(1/n ). With the above truncations, E¢R1) can
~tY4 which sets the characteristic scaleroln C(r,t), it ~ °€ written as
follows that the scaling limit and the corrections to it can be 1 9C(12)
obtained from a power-series expansion of kgs(n Eq. — =
(19), since the characteristic value kf is small (of order 2 ot
t~ 14 at late times. Retaining the leading and next—to-leadinq:Orrect to order 1
terms in the exponent, and evaluating the sums &ygives ;

C3
—VZ[VZC(12)+a(t)( Ct+—

} (22

It is worth mentioning that th€3/n term is essential for

5 4 scaling to be recovered at finite For n strictly infinite the
C(r,H)=exg — r + r C3%/n term is absent and “multiscaling” is obtaingfi1]. For
' 2&0(27t)Y?  96&,(27m) Y432 arbitraryn, an expansion in powers & can be made. Trun-

cating the expansion at ord&?® leads back to Eq(22) but
o] y? with n replaced by an effectiven*, given by n*=(n
+0 PREE —exg -~ 22m)V2 +2)aZ with a,=n[B((n+1)/2,1/2)|%/2 [4].
Dimensional analysis of Eq22) requiresa(t)=a/L?,
&gy & which defined.. Including the leading corrections to scaling
L2 o52m 12 )| (200 as usual we write

C(r,t)="fo(r/L)+L"“fo(r/L)+---, (23
wherey=r/L is the scaling variable and the coarsening scale
L(t)=&5%Y The correction-to-scaling exponentds=2. dL/dt=1/4L3+b/Le "3+ . .. (24)
This growth law is rather unusual since the generic form
of the growth law for nonconserved fields ligt)~tY2 In ~ whereb fixes the amplitude of ,(r/L). Inserting these ex-
this modelw is found to be trivial while within Mazenko pansions into Eq22) and comparing terms of leading order,
theory w is nontrivial. There are two fundamental length O(1/L%), and next-to-leading orde@(1/L**)), gives

scales in this problem, namely the phase coher¢Héand 3

i i i initi i x df f
t_he correlation Iengtrfo associated W|th the |n|t|.al condi __OZV)Z( Vifo"'a fot ‘o , (25)
tions. The coarsening scal€t) of the pair correlation func- 8 dx n
tion is the geometric mean of these two lengths. Note that the
pair correlation function has a strong dependenceégn xdf;y o bxdfy _,|_, 3f§fl
which is not “forgotten” at late times. This sensitivity to g gx ' 8 17 2 dx Vx| Vxlat e fat— =]
initial conditions is absent in other models, suchraso (26)

vector model, where the initial conditions drop out at late

times. In the conserved 1KY model also, simulation results WhereV§=d2/dxz+[(d— 1)/x]d/dx.

givesL~t6[14] instead of the.~t¥* behavior expected in For generah one must solve Eq21) with C(r,t) given
higher dimensiong$10], suggesting that this “anomalous” by Eq. (5). However, the singularities oE(y) and its de-
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TABLE lll. Values for the eigenvalueg, B, u, and » within
Mazenko theory for model B.

n a B 7 ®
2 1.54880435 -0.3336250 0.227495 2.4613967 i
5 1.72743447 -0.3179775 0.225025 2.0667992

20 2.01748270 -0.3292250  0.214515 1.1290901
50 2.179330049  -0.3487125  0.206515  0.5029987

rivatives aty=1 introduce some numerical difficulties. In-

stead, therefore, we solve E@2) which is valid for largen. ,/
For generaln, an expansion irC up to C3, leading to Eq. 02 SN
(22) with an effectiven* [4], gives scaling functions which 0+ 2 38 4 5 6 7 8 9 10
are in fairly good agreement with simulation resuyisl5|. 0.8 . . X
In solving Eg. (25 numerically, one must know the
boundary conditions. These are provided by sma#nd 06F /Y 1
largex analyses. For smal; the series expansiofy=1 /
+37_,B,x", substituted into Eq(25), gives fo=1+ Bx? 047 } 1

—(143M)apx*4(2+d)+ - - -, with B8,=B. Numerical in-
tegration can therefore be performed on Ezp) with initial
conditions  fy(0)=1, f5(0)=28, fy(0)=F5(0)=0.
Both @ and 8 are undetermined parameters.

For the largex analysis, we impose the physical condition g5}
that fo(x)—0 for x—oe. This leads to the linearized version

(x)

0

of Eq. (25 given by 04t _
x dfo 08— 4 6 & 10 12 14 16 18
8 d —V [V f0+ a’fo] (27) X

FIG. 2. Same as in Fig. 1, but for conserved order parameter.
Continuous and broken lines corresponddte 3, n=20, andd
=3, n=2, respectively(note the different scales for theaxes in
the upper and lower plots

There are four linearly independent solutions of E2j7),
with the general asymptotic form

fo(X)~Fox®exp —Bx'—AXx%). (28)
3X4/3 aX2/3
The first solution is the constant solution, corresponding to fo(x)~Fox 243 ex;{ - + )
A=c=B=0. It satisfies Eq(27) by inspection. The other 16 2
three solutions are obtained by substituting E8) into Eq. 33x*3 @ 3x?3
(27) and carrying out an asymptotic largeanalysis, leading X cos( + + @0, (30
to the relations 16 2
whereF, and ¢ are arbitrary constants.
v=4/3, Just as in the model A case, wherevas fixed by impos-
ing physical conditions on the largesolution, also in this
s=2/3, case we have an eigenvalue problem in which two param-
etersa andp are chosen to eliminate the unphysical constant
B3=—1/8v3, solution and the exponentially diverging solution. The same
problem is encountered in model B with a scalar order pa-
A=64aB?/9, rameter[6]. Applying the procedure described [i4,6] it is
possible to determine and 3.
c=—2d/3. Turning now to the corrections to scaling, we consider

first the four linearly independent largesolutions for the
The three different solutions correspond to the three solulinearized form of Eq(26). These are a power law solution,

tions for B, one real, two complex. The real solutioB= fi(x)~x"¢ an exponentially growing  solution,
—1/2v=—3/8, leads to an exponentially diverging solution ~xpexp(3<4’3/8 ax??), and two decaying solutions that can
for fo: be combined in the form
/ /
fo(X)~Fox 29 exp 3x*38— ax??), (29 ¢ v 3 ax?®
1(X)~xPex 16 + 5

while the two complex rootsBzS(lii\/§)/16, generate
two solutions which can be combined to give an exponen- X CO 3\/§X4/3+ a\/§X2/3+
tially decaying solution with oscillatory behavior 16 2 e

: (31)
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where ¢, is arbitrary, andp=(w—2d)/3 if >4 andp ciated correction-to-scaling exponent, for both noncon-
=(4—2d)/3 otherwise. The smak-solution isf,(x)=ux?®  served and conserved fields. In both cases Mazenko theory
—ap(1+3M)x*4(d+2)+--- . Therefore Eq.(26) is  suggests thab is nontrivial, depending on the nature of the
solved numerically with initial conditions f{(0)  dynamics involved, the dimensionalitgl, of the system and
=2u, f,1(0)=F;(0)=f7(0)=0. The two parameters: the number of order parameter componentsi-or noncon-
and w are as yet undetermined. They are fixed in the saméerved fields the value @ tends to the limiting value 4 for
way asa and :81 by requiring that an osci"atory’ exponen- n—o with d fixed, and ford—cc with n fixed. In the latter
tia”y decaying solution is recovered ss- . ||m|t, the Mazenko theory reduc¢§,24] to the OJK theory

Values fora, B, u, andw in 3D forn=2, 5, 10, 20, and [7] and its generalizationis.9], believed to become exact as
50 are shown in Table Il(For n=2, the effectiven*  d—> [27].

=x?/4 has been usedThe functionsfy(x) and f,(x) are The 1D XY model is anomalous in that it exhibits a dif-
displayed in Fig. 2 fon=2 and 20 in 3D. Agairb has been ferent growth law from the standard one for nonconserved
set tob=2 without loss of generality. dynamics, and the correction-to-scaling exponent is simple

The most important result to be extracted from Table Il is(@=2). In this model quantities of interest, such as the cor-
that the value of» decreases asincreases. This behavior is rélation functionC(r,t), retain “memory” of the initial con-
quite different from model A, where increases asymptoti- ditions even in the scaling limit. o
cally to 4 asn increases. It seems from Table IIl that In studying the conserve®(n) model, an expansion in
probably tends to zero far—, although an analytical de- 1/n was used which is valid for large. This approach was
termination of the correction to scaling farlarge but finite, ~Used to find the correction-to-scaling functiby(x) and the
analogous to the treatment of the leading scaling function ifgXPonentw for n=>5, 20, and 50 in 3D. Fon=2, an expan-
[12], has not yet been realized. sion inC up to C® was made. In the latter case, a comparison

Comparison of the scaling and correction-to-scaling func{4] between leading-order scaling results and simulations
tions displayed in Fig. 2 reinforces a point made in connecShows very good agreement despite the wrong growth law
tion with the nonconserved systems, namely that the corredi-€., without the logarithmic corrections predicted for 2
tion to scaling become largeelative to the scaling function [10]). In conserved systems decreases asincreases, rais-
itself) at large values of the scaling variabke As noted ing the question of whethev—0 or approaches some lim-
before, this suggests that in carrying out scaling analyses dfing value asn becomes very large. We have as yet been
data, more attention should be paid to small and intermediaténable to findf,(x) and w analytically in the limit of large
values ofx, where corrections to scaling can be expected tdut finite n—this remains an interesting open question.
be (relatively) smaller, than to large. Indeed, for the non- The main lesson for the analysis of experimental and
conserved cas@ig. 1) the correction to scaling has its maxi- Simulation data is that corrections to scaling can be expected
mum at a point where the scaling function is already quiteto be relatively small at small and intermediate scaling vari-
small (around 0.1 able x(=r/L), suggesting that this region be given more

weight than large< in fitting (or collapsing data.

VI. SUMMARY
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