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Corrections to scaling in the phase-ordering dynamics of a vector order parameter
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Department of Physics and Astronomy, The University, Manchester M13 9PL, United Kingdom

~Received 31 March 1999!

Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the
initial state, are studied for systems withO(n) symmetry at zero temperature in phase-ordering kinetics.
Including corrections to scaling, the equal time pair correlation function has the formC(r ,t)5 f 0(r /L)
1L2v f 1(r /L)1•••, whereL is the coarsening length scale. The correction-to-scaling exponentv and the
correction-to-scaling functionf 1(x) are calculated for both nonconserved and conserved order parameter
systems using the approximate Gaussian closure theory of Mazenko. In generalv is a nontrivial exponent
which depends on both the dimensionalityd of the system and the number of componentsn of the order
parameter. Corrections to scaling are also calculated for the nonconserved one-dimensionalXY model, where
an exact solution is possible.@S1063-651X~99!11308-4#

PACS number~s!: 64.60.Cn
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I. INTRODUCTION

The dynamics of a system undergoing phase ordering
lowing a quench from the high temperature~disordered!
phase to the ordered phase is of great interest@1#. The kinet-
ics of systems withO(n) symmetry subject to ‘‘model A’’
dynamics@2# ~i.e., systems with nonconserved order para
eter! and ‘‘model B’’ dynamics@2# ~systems with conserve
order parameter! have been previously studied@3,4# within a
Gaussian closure theory originally developed by Mazen
@5,6# following the seminal work of Ohta, Jasnow, and K
wasaki~OJK! @7#. In previous work@8# we have computed
the form of the corrections to the scaling limit, and t
correction-to-scaling exponent, for a number of systems w
nonconserved order parameter. These include some ex
soluble models, and the model A dynamics of a scalar fi
within the Mazenko theory.

In the present work we turn our attention to systems w
a vector order parameter, both nonconserved and conse
The corrections to scaling for systems with continuous sy
metry will be calculated using the Mazenko theory. It shou
be mentioned that this approach has been shown to be m
successful, at a quantitative level, in systems with nonc
served order parameter than those with conserved orde
rameter@9#. Nevertheless, the results obtained in the c
served case are in qualitative agreement with those obta
in simulations. Furthermore, the Mazenko approach se
the only available method to probe the questions of corr
tions to scaling addressed here. In particular, we found t
for nonconserved scalar fields, the correction-to-scaling
ponentv is predicted by this approach to have a nontriv
value. We will show that this same feature is present for
vector fields, with and without conservation.

It is well established@1# that at late times most phase
ordering systems approach a scaling regime, where
equal-time pair correlation functionC(r ,t)[^fW (x1

r ,t)•fW (x,t)& takes the formC(r ,t)5 f @r /L(t)#. The charac-
PRE 601063-651X/99/60~2!/1181~8!/$15.00
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teristic length scaleL(t) grows with time asL(t);ta, where
a is the growth exponent which depends on the nature of
dynamics and the symmetry of the order parameter. In p
ticular, a51/2 for nonconserved order parameter system
while a51/3 for systems with conserved scalar order para
eter anda51/4 for systems with conserved vector order p
rameter ~with logarithmic corrections forn52, d.2
@10#!. In previous work@8# we studied how scaling is ap
proached in nonconserved order parameter models suc
the one-dimensional~1D! Ising model with Glauber dynam
ics, the n-vector model withn5`, the approximate OJK
theory and the Mazenko theory for scalar fields. In all the
casesv was found to be trivial (v54) except the last, for
which v was found to be non-trivial and dimensionality d
pendent. The relevance of corrections to scaling lies in in
preting experimental and simulation results, where it is
vantageous to know how the scaling limit is approach
Corrections to scaling in systems with finiten.1 in d53
andd52 were not considered in@8#. The main objective in
this article is to study systems withn>2.

This article is devoted to the study of the corrections
scaling for systems withO(n) symmetry in phase-ordering
dynamics. The leading corrections to scaling enter the co
lation function in the form

C~r ,t !5 f 0~r /L !1L2v f 1~r /L !, ~1!

where f 0(x) is the ‘‘scaling function’’ and f 1(x) the
‘‘correction-to-scaling function.’’ The quantity which unite
theory, computer simulation and experiment is the struct
factor S(k,t)5Ldg0(y)1Ld2vg1(y), where g0(y) and
g1(y) are thed-dimensional Fourier transforms off 0(x) and
f 1(x) respectively, andy5kL. Coniglio and Zannetti@11#
solved the conservedO(n) model for n5` exactly, and
found that no simple scaling exists. Instead a ‘‘multiscalin
behavior was obtained, raising the question of whet
simple scaling exists in conserved order parameter syst
1181 © 1999 The American Physical Society
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1182 PRE 60N. P. RAPAPA AND A. J. BRAY
with n.1 generally~or even for conserved scalar fields!.
However, it was later shown by Bray and Humayun@12#,
analytically within the Mazenko theory, that scaling do
exist for large but finiten. Attempts to find multiscaling be
havior in simulation data for conserved scalar fields@13#, or
the conservedXY model in two @14# or three@15# dimen-
sions were not successful. It is now generally believed t
scaling is recovered asymptotically in time in the conserv
O(n) model, for all finite n, though multiscaling may be
observable in the preasymptotic regime@16#.

There are other sources of corrections to scaling a
from the one considered in this paper. In phase-ordering
tems there is, in addition to the time-dependent coarsen
scaleL(t), a second characteristic length scale, the ‘‘def
core size’’ j, in systems with topological defects. The co
rections to scaling associated with nonzero defect core
~wherej is the domain wall thickness in scalar systems! are
expected to enter as a power ofj/L. Here we are intereste
primarily in the corrections to scaling associated with no
scaling initial conditions. We therefore suppress the con
butions associated with nonzero core sizej by taking the
‘‘hard-spin’’ limit, i.e., working with an order-paramete
field whose length is everywhere unity,fW 251, which forces
j50 ~though in the Mazenko theory this limit will be take
at the end!. Also thermal fluctuations atT.0 may give rise
to significant corrections to scaling for systems quenche
a nonzero final temperatureT @17# ~where 0,T,Tc , with
Tc the critical temperature! as has been shown explicitly i
the nonconservedO(n) model with n˜` @18#. However,
we will only be studying systems quenched toT50. Al-
though corrections to scaling due to thermal fluctuations
nonzeroj are important we will not consider them further
this paper.

The outline of the paper is as follows. In the followin
section the approximate Mazenko theory is discussed
some general concepts are introduced. Section III deals
nonconserved order parameter systems. In Sec. IV, cor
tions to scaling for the nonconserved 1DXY model will be
studied. Systems with conserved order parameter are co
ered in Sec. V. Section VI concludes with a summary a
discussion.

II. MAZENKO THEORY

A ‘‘Gaussian closure’’ theory, building on the earlie
work of Ohta, Jasnow, and Kawasaki@7# has been develope
by Mazenko@5#. This theory has been successfully applied
O(n) models in the theory of phase-ordering dynamics@3,9#.
The equation of motion for an order parameterfW with con-
tinuous symmetry, for systems quenched toT50, is

]fW ~1!

]t1
5~2¹1

2!pF¹1
2fW ~1!2

]V@fW ~1!#

]fW ~1!
G , ~2!

wherep51 andp50 for conserved order parameter~model
B! and nonconserved order parameter~model A! systems,
respectively. In Eq.~2!, V(fW ) is a symmetric double-wel
potential for the scalar case, and a ‘‘wine bottle’’ potent
with a degenerate continuum manifold for a vector ord
parameter. Compact notation has been used in which ‘
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represents the space-time point (x¢1 ,t1) and ¹1
2 means the

Laplacian with respect tox¢1. Multiplying Eq. ~2! by fW (2),
averaging over initial conditions, and using the translatio
invariance ofC(12) gives~for t15t25t)

1

2

]C~12!

]t
5~2¹2!pF¹2C~12!2K ]V@fW ~1!#

]fW ~1!
•fW ~2!L G ,

~3!

where now¹2 is the Laplacian with respect tor 5ux12x2u
andC(12)5^fW (1)•fW (2)&. The angular brackets denote th
average over the initial conditions. In order to evaluate
average of the last term in Eq.~3! one introduces an auxiliary
field mW (r ,t) related to fW by ¹m

2 fW 52]V(fW )/]fW , with

boundary conditionfW ˜mW /umW u as umW u˜`, and fW 50 at mW

50. Near a defect, the fieldmW (r ) is the position vector of the
point r in the plane normal to the defect. The assumption t
mW is a Gaussian field enables the evaluation of the averag
the last term on the right hand side of Eq.~3! giving @3#

1

2

]C~12!

]t
5~2¹2!pF¹2C~12!1

1

2S0~1!
g

dC~12!

dg G , ~4!

whereS05^m(1)2& and

g~12!5^m~1!m~2!&/@^m~1!2&^m~2!2&#1/2

is the normalized correlator of the fieldm ~wherem is one of
the components ofmW ). An explicit expression which relate
g to C(12) was given in@19#

C5
ng

2p FBS n11

2
,
1

2D G2

FS 1

2
,
1

2
;
n12

2
;g2D , ~5!

whereB(y,z)5G(y)G(z)/G(y1z) is the Beta function and
F(a,b;c;z) the hypergeometric function. Equations~4! and
~5! provide closed form equations forC(12). On substituting
Eq. ~5! in Eq. ~4! one obtains an equation forg which can in
principle be solved numerically and substituted back into E
~5! to obtain the correlation functionC(12). We note at this
point that in deriving the correlation function~5!, the ‘‘hard-
spin’’ limit f5mW /umW u was employed. Since this result hold
far from defect cores, it will correctly describe the scalin
limit where the defects are dilute. Here we are also using i
compute the corrections to scaling.

III. NONCONSERVED O„N… MODEL

For a nonconserved systemp50, and Eq.~4! is simply

1

2

]C~12!

]t
5¹2C~12!1

1

2S0~1!
g

dC~12!

dg
. ~6!

For n51, using the properties of the hypergeometric fun
tion the last term on the right hand side of Eq.~6! can be
written in terms ofC(12) only, resulting in an equation
which is independent ofg(12). Corrections to scaling in this
case where obtained in our previous work@8#, and will not
be considered further here. For generaln, g cannot be elimi-
nated in favor ofC(12), and we will therefore work withg
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instead ofC(12). From dimensional considerations we s
that S0;L2 and can be chosen asS05L2/l. This choice
effectively definesL, up to an overall constant. Forn˜`, an
expansion in 1/n can be performed onC(g), and in this limit
gdC/dg5C1C3/n1O(1/n2). For n5`, Mazenko theory
reduces to then5` n-vector model for which an exact so
lution, including the corrections to scaling, is known@8#.
Expressing Eq.~6! in terms ofg explicitly leads to

1

2

]g

]t
5

Cgg

Cg
S ]g

]r D 2

1
]2g

]r 2
1

d21

r

]g

]r
1

l

2L2
g, ~7!

whereCg5dC/dg etc. SinceC(r ,t) is a function ofg(r ,t),
the scaling and corrections to scaling can be imposed
g(r ,t). In the scaling limit we expectg(r ,t) to approach the
scaling function g0(r /L) which is L-independent if all
lengths are scaled byL. In this limit therefore one expect
LdL/dt5const. Including corrections to scaling ing(r ,t)
andL(t) as usual@8# we can write

g~r ,t !5g0S r

L D1L2vg1S r

L D1•••, ~8!

C~r ,t !5 f 0S r

L D1L2v f 1S r

L D1•••, ~9!

dL

dt
5

1

2L
1

b

L11v
1•••, ~10!

where

f 0S r

L D5C~g0!, ~11!

f 1S r

L D5g1S r

L D FdC

dg G
g5g0

, ~12!

and b is a constant. Equating leading and next-to-lead
powers ofL in the usual way gives

g091
Cg0g0

Cg0

g0
82 1F x

4
1

d21

x Gg081
l

2
g050, ~13!

g191F x

4
1

d21

x Gg181Fl2 1
v

4 Gg11
b

2
xg0812

Cg0g0

Cg0

g08g18

1FCg0g0g0

Cg0

2
~Cg0g0

!2

Cg0

2 Gg1g08
250, ~14!

with Cg0
5@dC/dg#g5g0

, etc. The primes indicate deriva

tives with respect to the scaling variablex5r /L.
Equations~13! and ~14! are to be integrated numericall

subject to appropriate ‘‘initial’’ conditions imposed atx50.
Sincex50 corresponds tog051, the initial conditions are
obtained by considering the regimeg0˜1. Using the prop-
erties of the hypergeometric functions@20# one can derive
relations betweenC(g0) and its derivatives asg0˜1. Up to
prefactors of order unity, we find in this limit
e

n

g

Cg0g0
/Cg0

;@~12g0!u ln~12g0!u#21, n52, ~15!

Cg0g0g0
/Cg0

;@~12g0!2u ln~12g0!u#21, n52,

Cg0g0
/Cg0

;@12g0# (n24)/2, 2,n,4,

Cg0g0g0
/Cg0

;@12g0# (n26)/2, 2,n,4,

Cg0g0
/Cg0

;u ln~12g0!u, n54,

Cg0g0g0
/Cg0

;@12g0#21, n54,

Cg0g0
/Cg0

˜const, 4,n,6,

Cg0g0g0
/Cg0

;@12g0# (n26)/2, 4,n,6,

and so on. We have given explicit expressions forCg0g0
/Cg0

andCg0g0g0
/Cg0

asg0˜1 for the values ofn which we are
going to study. Using the above results one can show@3# that
the small-x behavior ofg0(x) is given by

g0~x!512
l

4d
x21••• ~16!

for n>2, where the limiting forms in Eq.~15! were used to
demonstrate that the term involvingCg0g0

/Cg0
in Eq. ~13! is

subdominant asx˜0 for n>2.
For large-x, g0˜0 @also C(12)˜0# and Eq. ~13! be-

comes linear because in this limit the second term in Eq.~13!
is negligible. It is easy to show that two linearly independe
solutions of the linearized equation have the asympto
forms g01;x22l andg02;x2l2d exp(2x2/8), for x˜`. As
Eq. ~13! is integrated forward fromx50, the large-x solu-
tion obtained will in general be a linear combination ofg01
and g02. The amplitudes ofg01 and g02, however, depend
on l. For systems with initial conditions containing on
short-range spatial correlations~as is the case for system
quenched from high temperature!, a power-law decay is un
physical, andl is determined by the condition that the coe
ficient of the power-law term,g01, must vanish@3#. Note
thatl is related to the exponentl̄ describing the decay of the
autocorrelation function@21# via l̄5d2l. Values forl are
given in Table I for 2<n<5 and 1<d<3. Comparison of
the predicted values ofl with simulations@22# and experi-
ments@23# show reasonable agreement. It can be shown
for d˜` the OJK result (l5d/2) is recovered for both
scalar@24# and vector@3# cases. The same limit forl is also
obtained forn˜` at arbitraryd.

The correction-to-scaling exponent,v, is found from Eq.
~14! in a similar way to the determination ofl from Eq.~13!.

TABLE I. Exponentl within Mazenko theory for model A.

n 2 3 4 5

d51 0.301 0.378 0.414 0.433
d52 0.829 0.883 0.912 0.930
d53 1.382 1.413 1.432 1.445
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In order to specify initial conditions for the numerical int
gration of Eq.~14!, we need the small-x behavior ofg1(x).
A small-x analysis of Eq.~14! gives g15blx4/16d(d12)
1•••, where the results in Eq.~15! were used to show tha
the last two terms in Eq.~14! are subdominant asx˜0. The
required initial conditions are thereforeg1(0)5g18(0)50.
As x˜`, the last two terms in Eq.~14! can be neglected
The two linearly independent solutions of the simplifi
equations have a power-law tail (;x2(v12l)) and a Gauss-
ian tail †;xqexp(2x2/8)‡ for largex, whereq52l2d1v if
v.2 and q52l2d12 otherwise. Having already foun
l, v is chosen on physical grounds in the same way asl,
namely that the coefficient of the power-law term in t
large-x solution should vanish. The values ofv obtained are
given in Table II for 2<n<5 and 1<d<3. Note thatv
˜4 for d˜`, as the OJK result~and its generalization to
vector fields! is recovered in this limit.

After solving Eqs.~13! and ~14! for g0(x) andg1(x) we
use these results to get the scaling functionf 0(x) and the
correction-to-scaling functionf 1(x) from Eqs.~11! and~12!.
Figure 1 shows the scaling functionsf 0(x) and the
correction-to-scaling functionsf 1(x) for n52 and 3 in 3D.
The amplitude off 1(x) is arbitrary. It is determined by the
coefficientb introduced in Eq.~10!: the valueb52 was used
in Fig. 1. The scaling functions and the correction-to-scal
functions do not show strong dependence onn and d for n
>2. For n51 andn>2 the scaling functions are very dif
ferent, especially in the small-x region. The reason for this i
the presence of the sharp interfaces inn51 systems, which
lead to a finite slope at the origin inf 0(x) @1# and a cubic
small-x behavior inf 1(x) @8#. For n>2, the small-x is qua-
dratic for f 0, and quartic forf 1, with logarithmic corrections
for evenn.

Within Mazenko theory the correction-to-scaling exp
nent v is nontrivial and depends on bothn and d, with v
<4 for all n andd in nonconservedO(n) models. The upper
bound of 4 is obtained whend˜` ~for any value ofn) or
n˜` ~for any value ofd).

A noteworthy feature of Fig. 1 is that the correction-t
scaling functionf 1(x) is much larger thanf 0(x) at largex
~the same feature was found for many of the models stud
in @8#!. This means that, in fitting data, scaling violations
large-x should be given less weight in choosing fitting p
rameters@e.g., the scale lengthL(t)# than violations at smal
or intermediatex, because corrections to scaling are larg
there.

IV. THE ONE-DIMENSIONAL XY MODEL

An exact solution of this model was first presented
Newmanet al. @22#. The solution yields an ‘‘anomalous’

TABLE II. Correction-to-scaling exponentv within Mazenko
theory for model A.

n 2 3 4 5

d51 3.976 3.982 3.990 3.993
d52 3.928 3.946 3.961 3.970
d53 3.930 3.945 3.958 3.966
g

d
t

r

growth law,L;t1/4, for the characteristic length exhibited b
the pair correlation function, compared with the usualL
;t1/2 growth law of nonconserved models. Mazenko theo
does not predict this growth law, for the simple reason t
the theory has been built in such way that it might be e
pected to give qualitatively correct results only for syste
with topological defects~i.e., n<d), since then-component
auxiliary field mW (r ,t) is defined in terms of the underlyin
defect structure. Despite this, the theory does a reason
job of accounting for the behavior of systems withn.d, and
in fact becomes exact in the limitn˜`. However, systems
with n5d11, which can support topological textures, a
poorly treated by this approach.

An exact solution for the nonconservedn52, d51 sys-
tem is possible because the equation of motion for the o
parameter becomes linear in the angle representationfW
5(cosu,sinu), which is natural in the hard-spin limit, wher
fW 251. In this limit the free energy functional is simplyF
5(1/2)*dx(dfW /dx)25(1/2)*dx(du/dx)2. The zero-
temperature equation of motion for model A,]fW /]t5

2dF/dfW , becomes, in the angle representation,

]u

]t
5

]2u

]x2
, ~17!

which is a diffusion equation for the phase angleu. Thus one

FIG. 1. The scaling functionf 0(x) and the correction-to-scaling
function f 1(x) for nonconserved order parameter. Continuous a
broken lines correspond tod5n53 andd53, n52, respectively.
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characteristic length scale is the ‘‘phase diffusion length
Lu5t1/2, but this is not the scale which characterizes the p
correlation function.

Equation ~17! can be solved in Fourier space to giv
uk(t)5uk(0)exp(2k2t). In evaluating quantities of interes
such as correlation functions, one needs to specify the in
conditions. The probability distribution,P(@uk(0)#), for
uk(0) is conveniently chosen to be GaussianP„@uk(0)#…
} exp@21

2(kbkuk(0)u2k(0)#. The choicebk5j0k2/2 is made
as it gives the initial conditionC(r ,0)5exp(2r/j0) for the
order-parameter correlation function, which is the approp
ate form for systems quenched from an equilibrium dis
dered state with correlation lengthj0. The equal-time corre-
lation function is given by

C~r ,t !5^fW ~x,t !•fW ~x1r ,t !&5^cos@u~x1r ,t !2u~x,t !#&.

~18!

Using the Gaussian probability distribution foruk(0) Eq.
~18!, with the dynamics~17! gives

C~r ,t !5expS 2(
k

1

bk
exp~22k2t !@12coskr# D .

~19!

Since the characteristic value ofk in the integral is of order
t21/2, and we anticipate~see below! the growth lawL(t)
;t1/4, which sets the characteristic scale ofr in C(r ,t), it
follows that the scaling limit and the corrections to it can
obtained from a power-series expansion of cos(kr) in Eq.
~19!, since the characteristic value ofkr is small ~of order
t21/4) at late times. Retaining the leading and next-to-lead
terms in the exponent, and evaluating the sums overk, gives

C~r ,t !5expF2
r 2

2j0~2pt !1/2
1

r 4

96j0~2p!1/2t3/2

1OS r 6

j0t5/2D G5expF2
y2

2~2p!1/2G
3F11

j0
2

L2

y4

96~2p!1/2
1OS j0

4

L4D G , ~20!

wherey5r /L is the scaling variable and the coarsening sc
L(t)5j0

1/2t1/4. The correction-to-scaling exponent isv52.
This growth law is rather unusual since the generic fo

of the growth law for nonconserved fields isL(t);t1/2. In
this modelv is found to be trivial while within Mazenko
theory v is nontrivial. There are two fundamental leng
scales in this problem, namely the phase coherencet1/2 and
the correlation lengthj0 associated with the initial condi
tions. The coarsening scaleL(t) of the pair correlation func-
tion is the geometric mean of these two lengths. Note that
pair correlation function has a strong dependence onj0,
which is not ‘‘forgotten’’ at late times. This sensitivity to
initial conditions is absent in other models, such asn5`
vector model, where the initial conditions drop out at la
times. In the conserved 1DXY model also, simulation result
givesL't1/6 @14# instead of theL;t1/4 behavior expected in
higher dimensions@10#, suggesting that this ‘‘anomalous
’
ir
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e

e

behavior may be present there also. Although no exact s
tion is known for the conserved case, heuristic argume
based on the role of the two characteristic lengths, can
count for the observedt1/6 growth @25#.

V. CONSERVED O„n… MODEL

The dynamical scaling properties of systems with a c
served order parameter~model B! with O(n) symmetry is
studied using Mazenko theory. Naive application of th
theory does not give correct growth lawL;t1/3 for scalar
fields ~the bulk diffusion field must be included in order t
get the correct law@26#!. Here, however, we will only con-
sider systems withn>2. For model B systems, Eq.~4! be-
comes

1

2

]C~12!

]t
52¹2F¹2C~12!1a~ t !g

dC~12!

dg G , ~21!

with a(t)51/2S0. For Eq.~21! to have a scaling solution i
is clear thata;1/L2 and L;t1/4. The latter is the correc
growth law for n>2, but for n52, d.2 there are loga-
rithmic corrections@10# which Eq. ~21! fails to predict. We
will first consider the case wheren is very large. In this case
an expansion in 1/n can be made in Eq.~21!. For largen,
C(g);g2g(12g2)/2n1O(1/n2) and g@dC(12)/dg#5C
1C3/n1O(1/n2). With the above truncations, Eq.~21! can
be written as

1

2

]C~12!

]t
52¹2F¹2C~12!1a~ t !S C1

C3

n D G , ~22!

correct to order 1/n.
It is worth mentioning that theC3/n term is essential for

scaling to be recovered at finiten. For n strictly infinite the
C3/n term is absent and ‘‘multiscaling’’ is obtained@11#. For
arbitraryn, an expansion in powers ofC can be made. Trun-
cating the expansion at orderC3 leads back to Eq.~22! but
with n replaced by an effectiven* , given by n* 5(n
12)an

2 with an5n@B((n11)/2,1/2)#2/2p @4#.
Dimensional analysis of Eq.~22! requiresa(t)5a/L2,

which definesL. Including the leading corrections to scalin
as usual we write

C~r ,t !5 f 0~r /L !1L2v f 1~r /L !1•••, ~23!

dL/dt51/4L31b/Lv131•••, ~24!

whereb fixes the amplitude off 1(r /L). Inserting these ex-
pansions into Eq.~22! and comparing terms of leading orde
O(1/L4), and next-to-leading order,O(1/L (41v)), gives

x

8

d f0

dx
5¹x

2F¹x
2f 01aS f 01

f 0
3

n D G , ~25!

x

8

d f1

dx
1

v

8
f 11

bx

2

d f0

dx
5¹x

2F¹x
2f 11aS f 11

3 f 0
2f 1

n D G ,
~26!

where¹x
25d2/dx21@(d21)/x#d/dx.

For generaln one must solve Eq.~21! with C(r ,t) given
by Eq. ~5!. However, the singularities ofC(g) and its de-
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rivatives atg51 introduce some numerical difficulties. In
stead, therefore, we solve Eq.~22! which is valid for largen.
For generaln, an expansion inC up to C3, leading to Eq.
~22! with an effectiven* @4#, gives scaling functions which
are in fairly good agreement with simulation results@4,15#.

In solving Eq. ~25! numerically, one must know the
boundary conditions. These are provided by small-x and
large-x analyses. For small-x, the series expansionf 051
1( r 51

` b rx
r , substituted into Eq.~25!, gives f 0511bx2

2(113/n)abx4/4(21d)1•••, with b25b. Numerical in-
tegration can therefore be performed on Eq.~25! with initial
conditions f 0(0)51, f 09(0)52b, f 08(0)5 f 0-(0)50.
Both a andb are undetermined parameters.

For the large-x analysis, we impose the physical conditio
that f 0(x)˜0 for x˜`. This leads to the linearized versio
of Eq. ~25! given by

x

8

d f0

dx
5¹x

2@¹x
2f 01a f 0#. ~27!

There are four linearly independent solutions of Eq.~27!,
with the general asymptotic form

f 0~x!;F0xc exp~2Bxv2Axs!. ~28!

The first solution is the constant solution, corresponding
A5c5B50. It satisfies Eq.~27! by inspection. The othe
three solutions are obtained by substituting Eq.~28! into Eq.
~27! and carrying out an asymptotic large-x analysis, leading
to the relations

v54/3,

s52/3,

B3521/8v3,

A564aB2/9,

c522d/3.

The three different solutions correspond to the three s
tions for B, one real, two complex. The real solution,B5
21/2v523/8, leads to an exponentially diverging solutio
for f 0:

f 0~x!;F0x22d/3 exp~3x4/3/82ax2/3!, ~29!

while the two complex roots,B53(16 iA3)/16, generate
two solutions which can be combined to give an expon
tially decaying solution with oscillatory behavior

TABLE III. Values for the eigenvaluesa, b, m, andv within
Mazenko theory for model B.

n a b m v

2 1.54880435 -0.3336250 0.227495 2.461396
5 1.72743447 -0.3179775 0.225025 2.066799
20 2.01748270 -0.3292250 0.214515 1.129090
50 2.179330049 -0.3487125 0.206515 0.502998
o

-

-

f 0~x!;F0x22d/3 expS 2
3x4/3

16
1

ax2/3

2 D
3cosS 3A3x4/3

16
1

aA3x2/3

2
1w0D , ~30!

whereF0 andw0 are arbitrary constants.
Just as in the model A case, wherel was fixed by impos-

ing physical conditions on the large-x solution, also in this
case we have an eigenvalue problem in which two para
etersa andb are chosen to eliminate the unphysical const
solution and the exponentially diverging solution. The sa
problem is encountered in model B with a scalar order
rameter@6#. Applying the procedure described in@4,6# it is
possible to determinea andb.

Turning now to the corrections to scaling, we consid
first the four linearly independent large-x solutions for the
linearized form of Eq.~26!. These are a power law solution
f 1(x);x2v, an exponentially growing solution
;xpexp(3x4/3/82ax2/3), and two decaying solutions that ca
be combined in the form

f 1~x!;xpexpS 23x4/3

16
1

ax2/3

2 D
3cosS 3A3x4/3

16
1

aA3x2/3

2
1w1D , ~31!

FIG. 2. Same as in Fig. 1, but for conserved order parame
Continuous and broken lines correspond tod53, n520, andd
53, n52, respectively~note the different scales for thex axes in
the upper and lower plots!.
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where w1 is arbitrary, andp5(v22d)/3 if v.4 and p
5(422d)/3 otherwise. The small-x solution is f 1(x)5mx2

2am(113/n)x4/4(d12)1••• . Therefore Eq. ~26! is
solved numerically with initial conditions f 19(0)
52m, f 1(0)5 f 18(0)5 f 1-(0)50. The two parametersm
and v are as yet undetermined. They are fixed in the sa
way asa and b, by requiring that an oscillatory, exponen
tially decaying solution is recovered asx˜`.

Values fora, b, m, andv in 3D for n52, 5, 10, 20, and
50 are shown in Table III~For n52, the effectiven*
5p2/4 has been used!. The functionsf 0(x) and f 1(x) are
displayed in Fig. 2 forn52 and 20 in 3D. Againb has been
set tob52 without loss of generality.

The most important result to be extracted from Table III
that the value ofv decreases asn increases. This behavior i
quite different from model A, wherev increases asymptoti
cally to 4 asn increases. It seems from Table III thatv
probably tends to zero forn˜`, although an analytical de
termination of the correction to scaling forn large but finite,
analogous to the treatment of the leading scaling function
@12#, has not yet been realized.

Comparison of the scaling and correction-to-scaling fu
tions displayed in Fig. 2 reinforces a point made in conn
tion with the nonconserved systems, namely that the cor
tion to scaling become large~relative to the scaling function
itself! at large values of the scaling variablex. As noted
before, this suggests that in carrying out scaling analyse
data, more attention should be paid to small and intermed
values ofx, where corrections to scaling can be expected
be ~relatively! smaller, than to largex. Indeed, for the non-
conserved case~Fig. 1! the correction to scaling has its max
mum at a point where the scaling function is already qu
small ~around 0.1!.

VI. SUMMARY

Corrections to scaling associated with a nonscaling ini
condition have been studied inO(n) models within the
Gaussian closure scheme of Mazenko. We have calcul
both the correction-to-scaling function,f 1(x), and the asso-
,

e

in

-
-
c-

of
te
o

e

l

ed

ciated correction-to-scaling exponent,v, for both noncon-
served and conserved fields. In both cases Mazenko th
suggests thatv is nontrivial, depending on the nature of th
dynamics involved, the dimensionality,d, of the system and
the number of order parameter components,n. For noncon-
served fields the value ofv tends to the limiting value 4 for
n˜` with d fixed, and ford˜` with n fixed. In the latter
limit, the Mazenko theory reduces@3,24# to the OJK theory
@7# and its generalizations@19#, believed to become exact a
d˜` @27#.

The 1DXY model is anomalous in that it exhibits a di
ferent growth law from the standard one for nonconserv
dynamics, and the correction-to-scaling exponent is sim
(v52). In this model quantities of interest, such as the c
relation functionC(r ,t), retain ‘‘memory’’ of the initial con-
ditions even in the scaling limit.

In studying the conservedO(n) model, an expansion in
1/n was used which is valid for largen. This approach was
used to find the correction-to-scaling functionf 1(x) and the
exponentv for n55, 20, and 50 in 3D. Forn52, an expan-
sion inC up toC3 was made. In the latter case, a comparis
@4# between leading-order scaling results and simulati
shows very good agreement despite the wrong growth
~i.e., without the logarithmic corrections predicted forn52
@10#!. In conserved systemsv decreases asn increases, rais-
ing the question of whetherv˜0 or approaches some lim
iting value asn becomes very large. We have as yet be
unable to findf 1(x) andv analytically in the limit of large
but finite n—this remains an interesting open question.

The main lesson for the analysis of experimental a
simulation data is that corrections to scaling can be expe
to be relatively small at small and intermediate scaling va
able x(5r /L), suggesting that this region be given mo
weight than largex in fitting ~or collapsing! data.
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